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Highlights 

• The performance level of a flexible manufacturing cell is investigated in this study.  

• Two main performance metrics (MLT and SR) are considered for the optimization of the FMC performance.  

• The machine sequence flexibility is the most effective input factor among the four input factors. 
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Abstract 

Machine sequence flexibility is defined as the combination of operation and routing flexibilities 

in this study. Its importance in the performance level of a flexible manufacturing cell (FMC) is 

investigated in this study. Studies related to the effects of various flexibility types, such as routing 

flexibility, are available in the literature. For example, studies related to routing flexibility try to 

measure the effects of routing flexibility on the performance levels in the operation of 

manufacturing systems under their own manufacturing environments. Similarly, this study also 

aims to present a performance measurement model based on Taguchi methods to evaluate the 

effects of machine sequence flexibility factors on the FMC performance and obtain an optimum 

and robust performance level. Two crucial responses, such as manufacturing lead time (MLT) 

and surface roughness (SR) are analysed to optimize the FMC performance. Robot speed, cutting 

tool type, and work-part material type are taken as the three other input factors to show the 

importance of machine sequence flexibility with respect to the other inputs. The study presented 

in this paper points out that machine sequence flexibility is the most effective input factor among 

the four input factors in the performance of the FMC. 
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1. INTRODUCTION 

 

The need to meet customer demands in a competitive market without compromising quality expectations 

is important for today's manufacturing companies. If this issue cannot be achieved, a decrease in sales and 

a contraction in market share may occur. Flexible manufacturing systems offer significant advantages in 

recent years in order to produce the products with the desired quality in the expected time. 

 

Computer-controlled and highly automated systems developed to produce on the basis of certain part 

families in order to reduce the times that do not create added value are called Flexible Manufacturing 

Systems (FMS) [1]. The initial level of FMS is called the flexible manufacturing cell and has a maximum 

of 3 computer numeric control (CNC) machining centres. Automatic material transport systems are used 

for the movement of parts between the CNCs. Work parts are moved within the cell and loaded and 

unloaded at machining centres by an automated material handling system. Other activities such as part 

capturing, clamping, and inspection are also performed automatically by operating sub-systems. 
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There are different studies in the literature to analyse FMS. For example, Knopp et al. [2] analysed an FMS 

designed to expand routes between machines in a semiconductor production system. The main focus of the 

study is to reduce the cycle time of the system.  

Goncalves [3] presented a study demonstrating the benefits of robot-controlled manufacturing in an FMS. 

Cutkosky et al. [4] analysed the flexibility capability of FMS. Yadav and Jayswal [5] examined the effects 

of different layout designs on FMS performance by using Taguchi methods integrated with simulation. 

Chan [6] presented a study on route flexibility by combining Taguchi methods with simulation. In the study, 

“Routing Rules,” “Routing Flexibility,” “Sequencing Rules,” and “Number of Pallets” factors were 

considered, and the system was analysed using six different machine tools.  Lozano et al. [7] and Chandra 

and Tombak [8] examined the effect of dynamic part routing issues in FMS. Also, Özkırım and Durmuşoğlu 

[9] presented a study examining the effect of product mix on the performance of cellular manufacturing 

systems. Wadhwa [10] proposed a study demonstrating the effects of flexible automation in SME foundries 

in Norway. Galbraith and Grene [11] presented a simulation-based study to improve system performance 

by analysing flexibility based on the level of variation of the density of the number of components per 

square centimetre of the printed circuit board. 

 

Pérez-Pérez et al. [12] reviewed 284 academic articles published in peer-reviewed international journals up 

to 2017 in the flexible manufacturing field. The crucial information of Pérez-Pérez et al. [12]’s review paper 

is the necessity for the ‘development of generalizable, structured, homogeneous and simplified definitions 

for each manufacturing flexibility type or a combination of them.’ This paper provides a combination of 

operation flexibility (‘ability to produce a product by alternative ways’) and routing flexibility (‘system’s 

ability to have multiple alternative processing paths within the system, by which a part could be made’) 

using the finding of Perez-Perez et al. [12]. In this study, the combined flexibilities provide altering machine 

sequence while the allocated portion of workload stays identical at each machine. In such a case, the 

combined flexibility can be called ‘machine sequence flexibility.’ At the highest level of ‘machine sequence 

flexibility,’ any machine in the process plan can start, continue or finish processing on a part. 

 

In this paper, three other input factors (robot speed, cutting tool type, and work part material type) are also 

included in the study, along with machine sequence flexibility as inputs. Although each input factor has its 

own individual effect on the system performance, their integrated effect can have a larger value than a total 

of their individual effects because of their interactions along with their individual effects. 

 

In the second part of the literature review, there are some other review articles on FMC/FMS design. Yadav 

and Jayswal [13] reviewed different attempts at the modelling of the FMC/FMS. Some designing 

methodologies of FMC/FMS are highlighted in [14-36].  One can conclude that there are various 

methodologies that can be applied to solving the problem of FMC/FMS designing and modelling in 

different manufacturing environments. However, Experimental Design Approaches can handle interactions 

among input factors and their combined effects on system performance. Therefore, this paper presents a 

TOPSIS-based Taguchi method to handle both input factors’ individual and their interactions’ effects on 

system performance. In the literature, the TOPSIS-based Taguchi method is used to solve the multi-

objective decision-making problems in major areas [37-53]. 

 

The proposed TOPSIS-based Taguchi method optimizes two separate performance metrics (responses), 

namely, a quality characteristic MLT (manufacturing lead time) and SR (Surface Roughness), 

simultaneously by using different input factor levels in an FMC. 

 

The paper is organized as follows: In section 2, the TOPSIS-based Taguchi model is presented. In section 

3, the experimental setup is described. The application and application results of the TOPSIS-based Taguchi 

model are presented in section 4. 

 

2. DEVELOPMENT OF THE TOPSIS BASED TAGUCHI MODEL 

 

Taguchi methods, which are integrated with multi-criteria decision-making (MCDM) methods, are 

recommended in the literature for multi-response design of experiment applications. Among the MCDM 

methods, the TOPSIS method is the most integrated method with the Taguchi methods. The TOPSIS-based 
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Taguchi Model developed in this study to link the multiple response performance of FMC with the levels 

of its factors is given in Figure 1. 

 

TOPSIS approach is based on information entropy and measures Euclidean distances from a negative ideal 

solution and a positive ideal solution for alternatives. The ideal solutions are made of all the positive and 

negative ideal solution values at performance metrics in the weighted normalized decision matrix. A 

ranking score (Ck
*) is assigned for each alternative (k) based on their distances from the negative and 

positive ideal solution. 

 

In addition, the Taguchi method is a suitable method for determining the optimal values of the levels of the 

factors. There is no need to calculate all possible combinations of factors in the Taguchi method to find the 

optimum factor levels. Taguchi's methodology uses the orthogonal array table to determine optimal factor 

levels with far less experimentation [54-59]. In Taguchi's orthogonal array, each line corresponds to an 

experimental scenario, and experiments are performed in accordance with these scenarios to obtain 

experimental results [58]. These results are converted into the signal-to-noise (S/N) ratio. The signal value 

presents the actual response value, and the noise factor represents the variance. 

 

There are three types of S/N ratio: larger is better, smaller is better, and nominal is best. Taguchi’s approach 

optimizes each S/N ratio with respect to its type. S/N ratios are obtained with the following equations [1-

5]: 
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where, yi: response in ith experiment, n: number of experiments, and S2: variance. 
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Figure 1. The TOPSIS based Taguchi model to link input factors’ levels and multi-response performance 

of a FMC 

 

 

3. DESCRIPTION OF THE EXPERIMENTAL SETUP 

 

In this study, three different types of aluminium are used as work-piece material. Each work-part is painted 

with a different colour (White: ASTMSA: Al 7075, Blue: ASTM SAE Al 6082, Pink: ASTM SAE Al 6061) 

[60]. On the other hand, high speed steel (HSS) cutting tools differ in terms of their diameter (Figure 2.d). 

The selected cutting tools have diameters of 3, 4 and 5 mm [61]. 
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Figure 2. Experimental set-up 

 

The experiments are performed using the fully-automated FMC set-up (Figure 2) installed in Production 

Systems Laboratory at Baskent University, Turkey. The FMC set-up uses “Maher- Marsurf PS1" equipment 

(Figure 2.a) for the measurement of the SR of the machined parts and three pallets (Figure 2.b) move work-

parts among the machines. Loading and unloading the parts at machines are performed with robot arms 

(Figure 2.c). At each considered machine (Figure 2.d), a buffer is also installed to store parts.  

 

4. THE APPLICATION OF THE TOPSIS BASED TAGUCHI MODEL AND ANALYSIS OF THE 

RESULTS 

 

The input factors and their levels used in this study are provided in Table 1. In this study, the total work 

load is distributed among the three machines and an individual CNC G-code is written for each CNC 

machining centre. The codes are named as P1, P2 and P3 for machining centres 1-3 respectively. The effect 

of machine sequence flexibility on the performance of FMC is represented by changing the machine 

sequence as P1→P2→P3 (level 1), P2→P1→P3 (level 2) and P3→P1→P2 (level 3). L9 orthogonal array 

with two replications is considered for the four input factors and their three levels. The corresponding output 

values (responses) are presented in Table 2. Hence the system has the machining sequence flexibility by 

relating different part program processing opportunities at the same time with the three identical CNC 

milling machines in an FMC. In this paper, the identical and real CNC milling machine, industrial robot, 

and conveyor is considered for a deterministic and real-time simulation approach to obtain each scenario's 

results. Figure 3 illustrates the system structure considered in this study. When the machine sequence is 

differentiated, the machining lead time differs according to the part program changes related to the 

machining requirements. This paper aims to answer an important question: which machine sequence plan 

(operation flexibility) provides a lower manufacturing lead time and reaches to expected quality 

requirements at the same time. Therefore, an optimal machine sequence connected with other design factors 

for the system can be obtained using the TOPSIS based Taguchi model. 

 

In the application of the TOPSIS-Taguchi approach; weights of the performance responses are required to 

convert normalized decision matrix to weighted normalized decision matrix. Nine separate weight sets are 

developed to analyse the robust importance of machine sequence flexibility with respect to other input 

factors in the overall FMC performance. The application is illustrated for the weight set in which equal 

weights (0.5) are assigned for the two performance responses, MLT and SR. 
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Table 1. Input Factors and their three levels 
INPUT FACTORS LEVEL 1 LEVEL 2 LEVEL 3 

MACHINE SEQUENCE 

FLEXIBILITY (A) 
P1/P2/P3 P2/P1/P3 P3/P1/P2 

ROBOT ARM SPEED (B) 
30% 

(630 mm/s) 

50% 

(1050 mm/s) 

70% 

(1470mm/s) 

CUTTING TOOL TYPE (C) HSS-3mm HSS-5mm HSS-4mm 

WORK PART MATERIAL 

TYPE (D) 

PINK-P 

ASTMSAE: 

Al 6061 

BLUE-BL 

ASTMSAE: 

Al 6082 

WHITE-W 

ASTMSAE: 

Al 7075 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Considered system for the study1 

 

Table 3 presents the weighted normalized decision matrix and ranking scores of the eighteen experiments. 

Each S/N ratios in the decision matrix of the TOPSIS model are calculated using Equation (1). To calculate 

S/N ratios in Table 3, “smaller is better” is used for both MLT and surface roughness responses. The ranking 

scores and input factors’ levels of experiments (Table 4) are input to MINITAB-R14 for analysis of 

variance. At this stage, “larger is better case” (Equation (2)) is used. The analysis of variance results of the 

MINITAB are shown in Table 5. The contribution ratios of the four input factors can be determined based 

on the ANOVA table (Table 5). Machine sequence flexibility has the highest impact ratio with 46% and 

 
1 Imaginations are gathered from the https://www.festo-didactic.com/ov3/media/customers/1100/00987874001075223761.pdf 
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correspondingly is the most effective input factor for the FMC performance in ‘the equal weight for the 

performance responses’ case.  

 

Table 2. L9 orthogonal array with two replications, specified by Taguchi’s design of experiment (with 

input factors’ levels and performance response values) 

 

L9 Design-Coded L9 Design-Uncoded 

Responses 

MLT (second) 
SURFACE 

ROUGHNESS  (µm)
a
 

MACHINE 
SEQUENCE 

FLEXIBILIT

Y 

ROBOT 
ARM 

SPEED 

(%) 

CUTT
ING 

TOOL 

TYPE 

WORK 

PART 

MATE
RIAL 

TYPE 

MACHINE 
SEQUENCE 

FLEXIBILIT

Y 

ROB

OT 

ARM 
SPEE

D (%) 

CUTT
ING 

TOOL 

TYPE 

WORK 
PART 

MATERI

AL TYPE 

Rep.1 Rep.2 Rep.1 Rep.2 Rep.3 

1 1 1 1 1 P1/P2/P3 30 3 P 2,679 2,552 0.164 0.202 0.198 

2 1 2 2 2 P1/P2/P3 50 5 BL 2,793 2,757 0.323 0.357 0.467 

3 1 3 3 3 P1/P2/P3 70 4 W 2,568 2,574 0.307 0.219 0.452 

4 2 1 2 3 P2/P1/P3 30 5 W 2,631 2,524 1.058 1.348 1.258 

5 2 2 3 1 P2/P1/P3 50 4 P 2,769 2,747 0.676 0.642 0.631 

6 2 3 1 2 P2/P1/P3 70 3 BL 2,640 2,612 1.128 0.83 0.948 

7 3 1 3 2 P3/P1/P2 30 4 BL 2,667 2,657 0.364 0.271 0.24 

8 3 2 1 3 P3/P1/P2 50 3 W 2,669 2,645 3.871 5.24 4.319 

9 3 3 2 1 P3/P1/P2 70 5 P 2,704 2,581 0.749 0.729 0.762 
a3 measured value from machined work-piece surface 

 

Table 3. Obtaining the weighted normalized decision matrix and ranking scores of the eighteen experiments 

(Equal weight set) 

 

EXP. 

Decision Matrix 

Normalized Decision 

Matrix 

Weighted normalized 

decision Matrix 

𝑆𝑖
∗
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ijrR =  (i=1,…,18; 
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experiment for the j-th 

response 

A= ija ; 

𝑎𝑖𝑗 =
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
2𝑚

𝑖=1

               

 

𝑉 =

(

𝑤1𝑟11 ⋯ 𝑤5𝑟15
⋮ ⋱ ⋮

𝑤1𝑟321 ⋯ 𝑤5𝑟325
) 

= (

𝑣11 ⋯ 𝑣15
⋮ ⋱ ⋮

𝑣321 ⋯ 𝑣325
)  

 

MLT SR 
Weight=0.5 0.5 

MLT SR 
MLT SR 

1 -68.559 15.703 -0.236 0.406 -0.118 0.203 0.001a) 0.389b) 0.998c) 

2 -68.921 9.816 -0.237 0.254 -0.119 0.127 0.076 0.313 0.804 

3 -68.192 10.257 -0.235 0.265 -0.117 0.133 0.070 0.318 0.819 

4 -68.402 -0.490 -0.235 -0.013 -0.118 -0.006 0.209 0.180 0.462 

5 -68.846 3.401 -0.237 0.088 -0.118 0.044 0.159 0.230 0.591 

6 -68.432 -1.046 -0.236 -0.027 -0.118 -0.014 0.216 0.172 0.443 

7 -68.520 8.778 -0.236 0.227 -0.118 0.113 0.089 0.299 0.770 

8 -68.527 -11.756 -0.236 -0.304 -0.118 -0.152 0.355 0.034 0.087 

9 -68.640 2.510 -0.236 0.065 -0.118 0.032 0.170 0.218 0.562 

10 -68.138 13.893 -0.235 0.359 -0.117 0.180 0.023 0.365 0.940 

11 -68.809 8.947 -0.237 0.231 -0.118 0.116 0.087 0.302 0.775 

12 -68.212 13.191 -0.235 0.341 -0.117 0.170 0.032 0.356 0.917 

13 -68.042 -2.594 -0.234 -0.067 -0.117 -0.034 0.236 0.152 0.392 

14 -68.777 3.849 -0.237 0.099 -0.118 0.050 0.153 0.236 0.606 

15 -68.339 1.618 -0.235 0.042 -0.118 0.021 0.182 0.207 0.532 

16 -68.488 11.341 -0.236 0.293 -0.118 0.147 0.056 0.332 0.855 

17 -68.449 -14.387 -0.236 -0.372 -0.118 -0.186 0.389 0.001 0.002 

18 -68.236 2.745 -0.235 0.071 -0.117 0.035 0.167 0.221 0.569 

√∑𝑟𝑖𝑗
2

𝑚

𝑖=1

 290.51 38. 7 

 -68.559/ 

290.51 

=-0.236 

15.703/38.7 

=0.406 

-

0.236*0.5 

=-0.118 

 

0.406*0.5= 

0.203 

   

𝑣𝑗
∗ -0.211 0.041    

𝑣𝑗
− -0.214 -0.037    

a) (-0.118-(-0.211))^2+(0.203- 0.041)^2=0.001 

b) (-0.118-(-0.214))^2+(0.203- (-0.037))^2=0.389 

c) 0.389/(0.389+0.001)=0.998 
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Table 4. Input factors’ levels and corresponding TOPSIS ranking scores (Ck
*) for the equal weight set 

Experiments 

MACHINE 

SEQUENCE 

FLEXIBILITY (A) 

ROBOT 

SPEED (B) 

TOOL 

TYPE (C) 

MATERIAL 

TYPE (D) 
Ck

* 

1 1 1 1 1 0.997714 

2 1 2 2 2 0.804315 

3 1 3 3 3 0.819012 

4 2 1 2 3 0.461851 

5 2 2 3 1 0.591145 

6 2 3 1 2 0.443357 

7 3 1 3 2 0.769843 

8 3 2 1 3 0.087426 

9 3 3 2 1 0.561549 

10 1 1 1 1 0.939841 

11 1 2 2 2 0.775436 

12 1 3 3 3 0.916514 

13 2 1 2 3 0.391934 

14 2 2 3 1 0.606043 

15 2 3 1 2 0.531913 

16 3 1 3 2 0.855006 

17 3 2 1 3 0.002089 

18 3 3 2 1 0.569369 

 

Table 5. Analysis of variance for the equal weight set 
Source DF Seq SS Adj SS Adj MS F P Contribution (%) 

A 2 0.59926 0.59926 0.29963 130.78 0.0 46 

B 2 0.20460 0.20460 0.10230 44.65 0.0 15.7 

C 2 0.20672 0.20672 0.10336 45.11 0.0 18.8 

D 2 0.26547 0.26547 0.13274 57.94 0.0 20.1 

Error 9 0.02062 0.02062 0.00229   1.5 

Total 17 1.29668     100 
S = 0.0478648   R-Sq = 98.41%   R-Sq(adj) = 97.00% 

 

On the other hand, Figure 4 presents the 3D plots offering the Ck
*. The optimal recipe of the Ck

* parameters 

is as follows: machine sequence flexibility (A) is P1/P2/P3; robot arm speed (B) is 30% (630 mm/s); Cutting 

Tool Type (C) is HSS-4mm; and work part material type (D) is Al 6061 (A1B1C3D1).  

 

Because we are interested in the relationship between the factors and the Ck
* values, an each Y (Ck

*) versus 

each X (factors) matrix plot is most appropriate tool for analysing the results. To help visualize the 

relationships, we can create a matrix plot of each Y versus each X with smoother lines. As a result from the 

matrix (Figure 5) the strongest relationship seems to be between Ck
* and cutting tool type factor (C). 

 

The model is also applied for the other eight weight sets and the application results for the whole nine 

weight sets are given in Table 6. The F values, contribution ratios and rankings of the four input factors for 

the nine weight sets according to the contribution ratios are provided in Table 7. For all weight sets machine 

sequence flexibility is the most effective input factor in determination of the FMC performance. 
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Level     A       B       C       D 

1      0.8755  0.7360  0.5004  0.7109 

2      0.5044  0.4777  0.5941  0.6966 

3      0.4742  0.6403  0.7596  0.4465 

Figure 4. Taguchi optimization result for the equal weight set 

 

 

 

Figure 5. Matrix plot of Ck
* 

 

Table 6. The ranking scores of the eighteen experiments for the nine weight sets 

Exp.  

 Weight Sets  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 wMLT – 

wSR  

 0.1- 0.9   0.2 - 0.8   0.3 - 0.7   0.4 - 0.6   0.5 - 0.5   0.6 - 0.4   0.7 - 0.3   0.8 - 0.2   0.9 - 0.1  

 TOPSIS Scores  

            

1.000     

            

1.000     

            

0.999     

            

0.999     

            

0.998     

            

0.998     

            

0.997     

            

0.995     

            

0.991     

            

0.980     

            
2.000     

            
0.804     

            
0.804     

            
0.804     

            
0.804     

            
0.804     

            
0.804     

            
0.804     

            
0.804     

            
0.802     

            

3.000     

            

0.819     

            

0.819     

            

0.819     

            

0.819     

            

0.819     

            

0.819     

            

0.819     

            

0.819     

            

0.819     

            
4.000     

            
0.462     

            
0.462     

            
0.462     

            
0.462     

            
0.462     

            
0.462     

            
0.462     

            
0.462     

            
0.462     

            

5.000     

            

0.591     

            

0.591     

            

0.591     

            

0.591     

            

0.591     

            

0.591     

            

0.591     

            

0.591     

            

0.590     

            

6.000     

            

0.443     

            

0.443     

            

0.443     

            

0.443     

            

0.443     

            

0.443     

            

0.443     

            

0.443     

            

0.443     

            

7.000     

            

0.770     

            

0.770     

            

0.770     

            

0.770     

            

0.770     

            

0.770     

            

0.770     

            

0.770     

            

0.769     

            

8.000     

            

0.087     

            

0.087     

            

0.087     

            

0.087     

            

0.087     

            

0.087     

            

0.087     

            

0.088     

            

0.089     

            

9.000     

            

0.562     

            

0.562     

            

0.562     

            

0.562     

            

0.562     

            

0.562     

            

0.562     

            

0.561     

            

0.561     

          

10.000     

            

0.940     

            

0.940     

            

0.940     

            

0.940     

            

0.940     

            

0.940     

            

0.940     

            

0.940     

            

0.940     

          

11.000     

            

0.775     

            

0.775     

            

0.775     

            

0.775     

            

0.775     

            

0.775     

            

0.775     

            

0.775     

            

0.774     

          

12.000     

            

0.917     

            

0.917     

            

0.917     

            

0.917     

            

0.917     

            

0.917     

            

0.917     

            

0.916     

            

0.916     

          

13.000     

            

0.392     

            

0.392     

            

0.392     

            

0.392     

            

0.392     

            

0.392     

            

0.392     

            

0.392     

            

0.393     

          

14.000     

            

0.606     

            

0.606     

            

0.606     

            

0.606     

            

0.606     

            

0.606     

            

0.606     

            

0.606     

            

0.605     

          

15.000     

            

0.532     

            

0.532     

            

0.532     

            

0.532     

            

0.532     

            

0.532     

            

0.532     

            

0.532     

            

0.532     

A

C
k

*

321
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0.8

0.6
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16.000     

            
0.855     

            
0.855     

            
0.855     

            
0.855     

            
0.855     

            
0.855     

            
0.855     

            
0.855     

            
0.854     

          

17.000     

            

0.000     

            

0.001     

            

0.001     

            

0.001     

            

0.002     

            

0.003     

            

0.005     

            

0.008     

            

0.018     

          
18.000     

            
0.569     

            
0.569     

            
0.569     

            
0.569     

            
0.569     

            
0.569     

            
0.569     

            
0.569     

            
0.570     

 Optimal   
 A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  

 

A1B1C3D1  
 Levels  

 

5. CONCLUSIONS 

 

The presented study in this paper clearly shows that the machine sequence flexibility is the most effective 

input factor in all nine different weight sets. This may be the reason why different types of flexibility are 

studied so much in the literature. It should not be forgotten that the experiments are performed in a 

manufacturing cell defined as ‘flexible’. Although there are many different types of flexibility, studies that 

define new flexibility types and show their importance are still needed. This study satisfies such a need by 

defining a new flexibility type and showing its importance in determination of the performance of a FMC. 

The CNC machine programmers can use the new flexibility type in allocating the machining requirements 

into different machining centres and writing the NC part programs for machining centres. 

 

Table 7. Ranking results of the four input factors for the nine weight sets 
Weight Set 
wMLT  –  wSR 

Input Factors F Contribution 
Ratio (%) 

Ranking 

0.1 – 0.9 

MACHINE SEQUENCE FLEXIBILITY (A) 129.38 46.15 1 

ROBOT SPEED (B) 44.27 15.3 4 

CUTTING TOOL TYPE (C) 44.50 15.8 3 

WORK PART MATERIAL TYPE (D) 57.39 20 2 

0.2 – 08 

MACHINE SEQUENCE FLEXIBILITY (A) 129.60 46.51 1 

ROBOT SPEED (B) 44.33 15.5 4 

CUTTING TOOL TYPE (C) 44.60 15.9 3 

WORK PART MATERIAL TYPE (D) 57.47 20.1 2 

0.3 – 0.7 

 

MACHINE SEQUENCE FLEXIBILITY (A) 129.88 46.51 1 

ROBOT SPEED (B) 44.41 15.9 4 

CUTTINGTOOL TYPE (C) 44.72 16 3 

WORK PART MATERIAL TYPE (D) 57.58 20.6 2 

0.4 – 0.6 

 

MACHINE SEQUENCE FLEXIBILITY (A) 130.26 45.45 1 

ROBOT SPEED (B) 44.51 15.7 4 

CUTTING TOOL TYPE (C) 44.89 15.8 3 

WORK PART MATERIAL TYPE (D) 57.73 20.4 2 

0.5 – 0.5 

 

MACHINE SEQUENCE FLEXIBILITY (A) 130.78 46.2 1 

ROBOT SPEED (B) 44.65 15.7 4 

CUTTING TOOL TYPE (C) 45.11 15.9 3 

WORK PART MATERIAL TYPE (D) 57.94 20.4 2 

0.6 – 0.4 
 

MACHINE SEQUENCE FLEXIBILITY (A) 131.56 46.21 1 

ROBOT SPEED (B) 44.87 15.7 4 

CUTTING TOOL TYPE (C) 45.46 15.9 3 

WORK PART MATERIAL TYPE (D) 58.24 20.5 2 

0.7 – 0.3 

 

MACHINE SEQUENCE FLEXIBILITY (A) 132.85 46.2 1 

ROBOT SPEED (B) 45.23 15.7 4 

CUTTING TOOL TYPE (C) 46.02 15.9 3 

WORK PART MATERIAL TYPE (D) 58.74 20.4 2 

0.8 – 0.2 

 

MACHINE SEQUENCE FLEXIBILITY (A) 135.35 46.2 1 

ROBOT SPEED (B) 45.94 15.6 4 

CUTTING TOOL TYPE (C) 47.12 15 3 

WORK PART MATERIAL TYPE (D) 59.69 20.3 2 

0.9 – 0.1 
 

MACHINE SEQUENCE FLEXIBILITY (A) 142.30 46.3 1 

ROBOT SPEED (B) 48.04 15.6 4 

CUTTING TOOL TYPE (C) 50.26 16.4 3 

WORK PART MATERIAL TYPE (D) 62.16 20.2 2 
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